혁신성장 BIG3 추진회의 21-15 (공개)

BIG3 산업별 중점 추진과제

2021. 10. 8.

관계 부처 합동

人	
T	八

١.	바이오 제조혁신을	위한		
	합성생물학 생태계	조성	방안	

- □. 백신신약개발 전임상 생태계 조성 방안 … 17
- Ⅲ. 바이오 수출입 지원을 위한 통관 관련 제도개혁 ───── 26

바이오 제조혁신을 위한 합성생물학 생태계 조성 방안

- 바이오파운드리를 중심으로 -

Ⅰ. 추진배경

◇ 합성생물학, 인간유전체 지도 완성에 필적하는 또 한 번의 大변혁 주도

- □ **합성생물학**은 인공적으로 생명시스템을 설계·제작·합성하는 분야
 - 유전체 기반기술의 발전과 데이터 축적으로 **유전체 해독(read/학습)**⇒ **합성(write/창작)**으로 패러다임이 전환되며 급속히 발전
 - ※ 인간게놈프로젝트('90~'03) 이후 인간게놈합성프로젝트('16~'25) 추진으로 생명현상 이해에서 나아가 유용한 기능을 설계하는 단계에 진입
 - o 현재 **단순한 생명체의 경우 인공적 제작***이 가능한 단계까지 발전
 - * 번식이 가능한 진정한 의미의 인공생명체(세포) 세계 최초 탄생(美, '21.3) ⇒ 유용 기능 인공생명체를 자유롭게 설계(design), 제작(build)하여 활용하는 시대 도래
- 최근 AI·Robot을 이용해 합성생물학 全 과정(설계(Design)-제작(Build)-검증(Test)-학습(Learn))을 자동화한 바이오파운드리*로 혁신 가속화 전망
 - * <u>바이오파운드리</u>란, 합성생물학 D-B-T-L 순환공정 기반의 위탁제조기술/시설로, Al-Robot으로 이루어진 고속·자동화 플랫폼을 활용해 생물학 실험 및 제조공정을 수행
 - 이 바이오연구의 오랜 난제인 속도, 스케일, 불확실성의 한계 극복 가능

◇ 합성생물학 기술 확보가 미래 바이오산업 경쟁력 좌우

- □ 합성생물학 기술은 **바이오 관련 全산업에 막대한 파급력 창출** 전망
 - o 합성생물학 시장은 **연평균 28.4%**로 빠르게 성장 전망
 - ※ 글로벌 합성생물학 시장 규모 : ('20) 103억 달러 → ('30) 1,255억 달러
 - 바이오 연구의 고속화·대량화·저비용화 실현으로 제약, 에너지,
 화학, 농업 등 다양한 타 산업에도 全방위적 활용* 가능
 - * (활용 예시) 질병감지·약물 분비 등 **의약품기능 장내미생물 제작**, 유전자를 조작한 **말라리아 저항성 수컷 모기를 제작**하여 전염병 매개 모기 근절 및 감염질환 예방

◇ 글로벌 기술패권경쟁 및 블록화 대비 합성생물학 기술주권 확보 필요

- □ 합성생물학이 **산업**뿐 아니라 **환경, 안보** 등의 차원에서도 중요해짐에 따라 **국가간 기술경쟁의 핵심**으로 대두
 - 환경 친화적 바이오소재 및 공정개발에 기여함으로써 탄소중립
 으로의 전환 촉진 및 지속 가능한 경제성장에서 핵심적 역할 가능
 - ※ 향후 2050년경, 전체 화학 산업의 50%가 바이오화학으로 대체될 것으로 전망
 - 생물무기로서의 파괴력-활용성 등 이중용도(dual use) 위험성에 대해 선제적 대응을 위한 기술역량 확보도 필요
 - ※ 슈퍼베이비, 인공생명체 악용 가능성, 생물학적 테러 등 위험성과 생명윤리적 우려
- ⇒ 합성생물학 핵심기술 개발 및 산업적 활용을 촉진함으로써 미래 바이오 제조혁신 경쟁력 확보 및 글로벌 기술패권 경쟁 대응

Ⅱ. 해외 현황

【주요 국가별 정책현황】

세계최고 수준의 기술경쟁력 지속 유지를 위한 합성생물학 **투자 확대**

- '미국혁신경쟁법('21.6)'에서 합성생물학을 10대 핵심기술로 지정하며 바이오경제연구개발을 위한 융합연구, 인력양성 등 추진
 - ※ DARPA 산하 합성생물제조연구기관(BioMADE) 신설 추진('20.10~), 7년 간 총 2억 7천만 달러 투입, 제조기술(TRL4~7) 집중
 - ※ 세계 최초 인공세포 합성 성공('10, 크레이그벤터연구소)을 비롯해 DNA 해독·편집기술, 인공유전체 합성 등 다양한 세부기술 영역에서 기술 선도
 - ※ Ginkgo bioworks, Zymergen 등 미국 바이오파운드리 **민간 기업의 나스닥** 상장 등 합성생물학 산업영역에서도 다수 선도그룹 존재

세계 최초 국가 합성생물학 로드맵 수립 및 단계적 연구 환경 조성

- 정부 주도의 전략적 육성을 위한 'A Synthetic Biology Roadmap for the UK('12)' 및 'Strategic Plan('16)' 마련
 - ※ 합성생물학 연구-교육-산업 생태계 마련을 위해 2012년 이후 합성생물학 센터(7개) 및 바이오파운드리(3개)를 정부주도로 구축

● **스마트셀(바이오 x 디지털) 프로젝트**로 포스트 4차 산업혁명 준비

- 생물 정보에 AI 기술을 접목해 생물 기능을 조정하여 활용하는 'NEDO 스마트셀 프로젝트('16-'20)' 추진
 - ※ '바이오전략 2019'에서는 바이오 × IT/Al에 따른 '포스트 4차 산업혁명'을 전망 하며 스마트셀 기반의 바이오산업 경쟁력 향상 도모

美, 英에 이은 **대규모 투자 후발주자**로 단기간 **빠른 추격** 노력

- 국가 **중점 과학기술 분야**로 **합성생물학을 선정**하고 단기간에 **투자 확대 및 인프라 구축에 집중**
 - ※ 중국 과기부 '국가중점연구개발계획-바이오 중점 전문프로젝트' 내 합성생물학 분야 약 3억 8천만 위안 투자('20년) 및 선진 지역에 대규모 바이오파운드리 구축 중('18~'20, 약 7,200억원)

[글로벌 산업현황]

- □ 주요 **글로벌 기업이 합성생물학 분야로 진출**하여 사업 확장 및 혁신 스타트업에 적극적 투자
 - O Cargill(농업 합성생물학 R&D 지원), DuPont(최초의 합성생물학 섬유 제품 Sorona 생산), Virgin Group(합성 바이오 기술 투자기업 Virgin Fuels 운영) 등 대기업 진출
- □ 합성생물학 전문 플랫폼 기업의 급격한 성장 및 기업간 연계 활발
 - 코로나 팬데믹에 따른 경제위기 상황에도 '20년 한 해만 약 80억 달러 (약 9조원) 민간 투자를 기록하는 등 산업계의 관심이 빠르게 확대
 - ※ 지난 10년간 합성생물학 산업 민간 투자는 총 180억 달러(약 20조원)에 이르며, 美 최초 합성생물학 기업 'Ginkgo Bioworks'은 설립 12년 만에 기업가치 175억 달러 달성
 - 美, 민간을 중심으로 글로벌 바이오 제조산업 허브를 목표로 '합성 생물학 제조 육성 연합*' 출범('21.4)
 - * 합성생물학 선도 3개 기업(Antheia, Genomatica, Ginkgo Bioworks) 주도

【글로벌 표준화·규제현황】

- □ 합성생물학 기술적용을 위한 **국제적 산업표준 및 규범 정립 관련** 글로벌 논의 진행 중
 - 국제표준기구(ISO)를 중심으로 합성생물학 관련 용어, 바이오뱅크 인프라, 분석 및 품질평가법, 바이오공정, 정보처리·통합 등에 대한 표준화 진행 중
 - o 합성생물학 기술개발 및 활용 촉진을 위한 **규제제도 정비** 추진 중
 - ※ 유전자가위(CRISPR 기술)를 비롯한 신규 합성생물학 기술을 이용한 경우 LMO 예외, 인공 조직·장기·생명체 개발 이후 동물실험 제한범위 등 논의
- □ 합성생물학의 잠재적 위험성을 고려한 기술발전을 위해 생물안보, 생물안전성, 생명윤리 등의 관점에서 국제적 논의 활발*
 - * 美 크레이그벤터연구소(JCVI)의 세계 최초 인공생명체 실험실 합성을 계기로 UN 생물다양성협약(CBD) 내 합성생물학 논의 활발
 - 바이오테러 등의 위험성 가중으로 **국가 차원의 안전성·안보 관리** 노력^{*} 및 다학제 간 관심 증대
 - * 합성생물학 연구의 이익과 위험에 대비하기 위한 논의(美 생명윤리대통령자문위원회), 합성생물학의 안전성 및 위험성에 대하 과학·인문·사회 통합 연구(英 임페리얼칼리지) 등

Ⅲ. 우리의 현주소 및 시사점

- ◇ 국내 합성생물학 기술 수준은 지속적으로 향상되는 추세이나 국가차원의 육성전략 부재 및 전문인력·시설·기업지원 등 산업화 연계 노력 미흡
- ◇ 유능한 BT・IT 인적 자원과 ICT·제조역량 등 강점을 활용할 경우 독자적 기술력 확보 및 산업적 활용을 위한 잠재력이 충분
- □ (정부투자) 부처별로 R&D 투자를 확대하고 있으나, 성과 연계 및 활용을 위한 범부처적인 협업 및 핵심인프라에 대한 투자는 미흡
 - 최근 5년 간('16~'20) 합성생물학 분야 정부투자*는 증가 추세이나
 대학 중심의 기초연구에 70% 이상 집중
 - * (연도별) '16 203억원 → '17 222억원 → '18 310억원 → '19 324억원 → '20 365억원 (부처별) 과기정통부 56.2%, 산업부 16.2%, 교육부 7.7%, 농진청 7.0% 등 (주체별) 대학 73.3%, 출연연 17.2%, 국공립연구소 3.7%, 중소기업 3.5%
 - 초고속 DNA 설계·합성에 필요한 바이오파운드리, 공정개발 지원
 및 시험시설은 개별 기관·기업차원에서 소규모로 운영 중*
 - * 생명(연)·카이스트는 파일럿 규모의 연구용 바이오파운드리를 운영 중
 - * CJ제일제당은 균주개발 및 생산공정 자동화를 위한 바이오파운드리 시설 도입 중
- □ (기술역량) 국내 기술수준은 최고기술보유국(미국 100%) 대비 75%로 유럽, 중국 대비 낮고 일본과 비슷한 수준에서 선도국가 추격 중
 - 새로운 유전체 설계·제작 기술 수준은 미흡하나 전통적 방식의 미생물 개량 및 대량생산 기술 분야는 세계선도*
 - * CJ제일제당은 세계 수준의 발효·정제기술 보유로 5대 사료용 아미노산(라이신, 트립토판, 발린 등) 생산 세계 1위
 - 국내 합성생물학 논문·특허의 선도국 대비 점유율*은 낮은 편이나, 양적·질적 수준은 증가 추세**
 - * 주요 7개국 중 한국의 논문 특허 점유율 : 논문(3.9%), 특허(2.7%)
 - ** 최근 5년간 논문 증가율 8%. 특허인용지수(3.4)는 중국(1.4)의 2배 이상

- □ (산업기반) 합성생물학의 관련 산업은 현재 태동기로 바이오 뿐 아니라 화학, 환경, 소재 등 산업적 활용 수요 확대 중
 - 합성생물학기술 전반을 제공하는 국제적 역량을 갖춘 합성생물학 전문기업은 없으나, 일부 **요소기술 보유** · **활용 기업*** **존재**
 - * DNA 분석 합성(바이오니아, 마크로젠), 유전체 편집(툴젠), 효소개발(제노포커스) 등
 - 바이오 소재의 높은 해외 의존도(67%) 극복 등을 위해 대기업을
 중심으로 합성생물학을 통한 사업영역 확장 모색
 - ※ LG화학(생분해성 신소재 개발), GS칼텍스(탈석유 가속화, 친환경제품 생산), SKC(생분해성 바이오플라스틱 개발), CJ제일제당(해양생분해 플라스틱 개발)
- □ (생태계) 합성생물학 연구·산업 생태계 구축을 위한 전문 시설, 학회, 법·제도 등의 기반 요소 및 전문 인력이 절대적으로 부족
 - (인력) 국내 합성생물학 전문 인력은 부족*하나, 기존 BT, IT 우수 인력의 합성생물학 분야 전환·흡수 가능성은 충분
 - * 합성생물학 전문 인력(PI급)은 약 250명으로 추산(한국생물공학회 등)
 - (법·제도) 합성생물학 연구 및 산업적 활용을 위한 **사회적 합의** 및 규제합리화, 기술활용 방안 등 법·제도적 준비 미흡*
 - *「유전자변형생물체법」, 「생화학무기금지법」등을 종합적으로 고려한 합성 생물학 연구 및 산업화를 위한 통합적 가이드라인 부재
 - (국제협력) 합성생물학 관련 국제 공조, 규제 및 표준화, 산업적 활용을 위한 민·관 간 글로벌 협력에 개별적으로 참여 중
 - ※ (과기부) OECD 바이오나노기술위(BNCT), (산업부) UN 생물다양성협약(CBD), (민간) 글로벌바이오파운드리연합(GBA), 아시아합성생물학회(ASBA)

< 국내 합성생물학 관련 산학연 현장 의견 >

출연연 역량을 활용하여 공공 바이오파운드리 구축하고 산업화 성공사례 창출 유도 _ A 대학
민간기업의 경우, 개별적인 장비와 프로세스 구축에 한계 _ B 기업
Al 활용한 합성생물학 전문인력 및 데이터 확보 인력 양성 필요 _ C 출연연
합성생물학제품은 GMO 이슈 때문에 초기부터 안전성 고려해야 _ D 대학

Ⅳ. 추진전략

비전

합성생물학 육성을 통한 바이오 제조혁신 가속화

목표

- ▶ 바이오제품 생산 시간·비용 1/2로 절감
- ▶ 혁신신약·소재 연구개발 효율 2배 증가

① 합성생물학 핵심기술 선제적 확보

빅데이터 · AI기반 인공세포 설계 • 제작 원천기술 확보

바이오 제조공정 혁신을 위한 단계(DBTL)별 요소기술 개발

추진 저략

및

중점 추진 과제 ② 정부 주도의 공공 바이오파운드리 구축

합성생물학 기반 D-B-T-L 코어 중심의 K-바이오파운드리 구축

바이오파운드리 핵심 장비 국산화

③ 합성생물학 기반 바이오 제조혁신 조기 성과 창출

기존 산업의 바이오 융합 新산업 창출 지원

합성생물학 기반 제품 개발 지원 및 창업 활성화

민간부문의 합성생물학 R&D 투자 부담 완화

④ 합성생물학 발전 생태계 조성

합성생물학 미래 전문인력 양성

사회적 수용성 확보 및 국내 역량 결집 및 규제 개선

국제 협력 활성화

Ⅴ. 중점 추진과제

1

합성생물학 핵심기술 선제적 확보

① 빅데이터·AI기반 인공세포 설계·제작 원천기술 확보

- o 합성생물학 기술의 총화이자 역량의 척도인 **인공세포 설계·제조**를 위한 세계 수준의 핵심 원천기술* 개발(~'30)
 - * DNA설계/합성 → 유전체 설계·제작 → 인공세포 구축 구동 기술 등
 - ※ 최초로 자가 번식이 가능한 인공생명체 제작(美 크레이그벤터연구소. '20)
- 에너지, 화학, 신약개발 등에 활용이 가능한 **인공세포*** 제작(~'30)
 - * (신약) 미생물 치료제, (소재) 바이오플라스틱 생산 미생물, (에너지) 수소 생산 미생물 등
 - ※ 빅데이터 AI기반 모델링을 통하여 다양한 목적의 인공세포 제작-평가 최적화 가능

② 바이오 제조공정 혁신을 위한 단계(DBTL)별 요소기술 개발

- 국내기술 역량이 상대적으로 낮은 **유전체설계(Design)·합성(Build)** 기술은 주요대학 및 출연연^{*}을 통하여 핵심기술 확보(~'28)
 - * 카이스트(유전체설계), 포항공대(유전자회로), 생명연(유전체합성), ETRI(AI) 등
- 고속분석 · 평가(Test) 및 학습 · 피드백(Learn) 분야는 IT 및 자동화 기술 등 국내 역량을 활용하여 세계적 수준의 경쟁력 조기 확보(~'25)

< 바이오 제조공정 단계별 요소기술 >

단계	요소기술	국내역량	확보 전략
설계 (D esign)	DNA 설계, 인공대사경로 설계 등	底	★ 대학출연(연) 중심 중장기 연구지원(~'28) ★ (사업적 전체
합성 (B uild)	유전자합성기술, 대형유전자 제작 기술, 유전체교정 기술 등	底	* KAIST(유전체 설계), 포항공대(유전자 회로 설계) 등 * 생명연(유전체 합성), IBS(유전체 교정) 등
테스트 (T est)	초고속 스크리닝, 유전자 성능평가 등	中	◆ 국내 강점기술*을 최대한 활용하여
학습·피드백 (L earning)	AI기반 데이터 마이닝, 대사활성분석/예측시스템 등	中	선진국 수준의 기술 조기 확보(~'25) * AI·빅데이터 활용, 자동화 기술 등

__

① 합성생물학 기반 D-B-T-L 코어 중심의 K-바이오파운드리 구축

- (추진방향) 국가 바이오파운드리 연구개발 및 산업생태계 마련을 위한 핵심장비·SW 도입 등 D-B-T-L 코어 구축 및 서비스('23~'30)
- (1단계, 인프라) 바이오파운드리 센터 건립('23~'25), DBTL 단계별 핵심장비 및 통합플랫폼 등 운영시스템 구축('23~)
 - ※ 공공연구인프라로서, 지속적·안정적 서비스 제공 및 대학·연구기관 등의 접근성을 감안하여, 대덕연구개발 특구 지역 내에 생명(연) 중심으로 구축·운영하되 관계 출연연과 협력하여 추진
- (2단계, 핵심 분야 서비스) 화학소재 대체 등 핵심 산업 지원분야 및 질병 감지·제어, 생물무기 대응 등 안보분야 긴급대응 역량 확충을 위한 분야 선정 및 서비스 우선 지원
 - ** 바이오파운드리를 통해 화학소재 대체, 친환경 공정 등의 주요 타켓 및 신·변종 감염병, 생물무기 대응 기술개발 지원 등
- (3단계, 서비스 분야 확대 및 고도화) 전 산업부문에 확산될 수
 있도록 대상 분야 확대 및 플랫폼 서비스 고도화 지원
 - ※ 바이오헬스(신약후보물질 발굴), 식품(주요성분 합성) 등 전 분야로 확대
 - < 바이오파운드리 단계별 구축 및 서비스 계획 >

1단계 (3년)		2단계 (3년)		3단계 (2년)
코어 인프라 구축		공동 플랫폼 서비스		<u> 플랫폼 서비스 고도화</u>
· 핵심장비 시스템 구축 · 통합 소프트웨어 개발·적용	\Rightarrow	·D-B-T-L 통합 서비스 지원 ·우선 지원 분야 서비스	\Rightarrow	·응용분야별 서비스 지원 ·스타트업 육성
▷ 차세대 염기서열분석장치, DNA설계 SW, 고속 DNA 합성기, 초병렬 세포반응기 등		▷ 화학소재 대체 및 감염병 대응 분야 등 산업·안보 관점 중점분야 우선 지원		▷ 중점지원분야 확대

② 바이오파운드리 핵심 장비 국산화

- o 차세대 바이오파운드리 장비 시장 선점이 가능한 핵심부품 및 필수장비 선정, 산·학·연 협동연구 지원('23~'28)
 - 특허분석, 기초 · 원천연구, 시제품 제작 및 검증 등 전주기 지원

DNA 분야	단백질 분야	세포 분야
·플라스미드 전자동 병렬 추출장비 ·차세대 염기서열 분석기기 ·중형 자동화 리퀴드 핸들러	·초고성능 유세포 분리기 ·차세대 3차원 세포이미징 장치	·초소형 멀티플레이트 세포 배양기 ·멀티병렬형 고성능 벤치탑 배양기 ·초고속 콜로니 Picker

○ 개발된 부품 및 장비는 공공 바이오파운드리를 통해 시험·검증

3

① 기존 산업의 바이오 융합 新산업 창출 지원

- 바이오헬스, 화학/환경, 식품/소재 등 기존 산업의 합성생물학 기반 신산업 창출을 지원하는 바이오파운드리 활용기술개발 추진('25~)
 - 바이오파운드리 시설 및 기반기술을 활용, 바이오소재 고속발굴 개량 검증
 - ※ (Top down) ①신규 생합성 경로 구현, ②소재 활성 극대화, ③소재 생산성 제고 등 바이오 파운드리 기반 바이오소재 고도화, (Bottom up) 산학연 수요 맞춤형 바이오파운드리 활용 지원
- 합성생물학 연구개발 과정에서 생성된 데이터는 **국가바이오** 스테이션을 통해 축적 및 민간 공유('23~)
 - 특허, 장비, 기술 공급처 등에 대한 정보 제공 및 공유를 위한 온라인 공유 플랫폼 서비스

② 합성생물학 기반 제품 개발 지원 및 창업 활성화

- 혁신적 스타트업을 발굴하여 아이디어 기획부터 초기 설계, 제품 테스트 등 전주기 지원 및 육성('23~)
 - 아이디어 발굴 및 기획, 바이오파운드리를 활용한 아이디어 구현, 시제품 제작 및 최적화 등 단계별 지원(경쟁형)

아이디어 발굴 지원

·바이오파운드리 활용 가능한 새로운 사업 아이템 발굴 및 기획 지원

아이디어 구현 지원

·맞춤형 유전자 설계/합성 ·초고속 세포성능 분석 등

제품화 지원

·시제품 개발 및 품질 검증 ·성능 최적화 지원

 \triangleright

③ 민간부문의 합성생물학 R&D 투자 부담 완화

 \triangleright


- 기업의 R&D 참여 및 조기 성과 창출 유도를 위해 합성생물학 분야 국가연구개발사업의 민간 매칭 비율 완화 방안 검토('25~)
 - ※ 매칭비율은 과기정통부-사업소관 부처 협의를 통해 조정 가능(국가연구개발혁신법 및 시행령)

[참고] 바이오파운드리 구축 및 활용기술개발 사업 (21.9. 예타신청)

□개요

- o (목적) 바이오파운드리 인프라 구축·활용을 통해 바이오 연구개발 및 사업화 속도를 제고하고 국내기업 혁신을 견인
- o (기간 및 사업비) '23~'30, 총 6,852억원(정부 5,998억원*, 민간 854억원)
 - * 과기정통부 3,644억원, 산업부 2,354억원

□ 사업 로드맵

□ 합성생물학 미래 전문 인력 양성

- o 합성생물학 기반 신산업 창출을 지원하기 위해 바이오 및 IT 인력 대상 미래 수요 대응 전문인력 양성('23~)
 - (기업수요 대응) 바이오파운드리 전환 희망 기업 종사자를 대상으로 실습 중심의 바이오파운드리 공정 현장 전문가 육성
 - ※ 바이오벤처 등 재직자 대상 '(가칭)바이오파운드리 특화 실습 연수과정' 운영
 - (新융합인력) 빅데이터·AI+BT 등 통합교육을 통한 융합 인력 양성
 - ※ IT. BT 분야 대학원생, 기업의 젊은 연구자 대상으로 통합·추가교육 실시 ('23 ~ '28년 : 30명/연 → '29~ '30년 : 100명/연 양성)
- **합성생물학** 저변 확대를 위한 **경연대회(가칭**. K-iGEM*) 개최(연 1회)
 - * iGEM은 2004년부터 美 MIT에서 개최하는 합성생물학 기반의 새로운 아이디어 및 시스템 경진대회로. 연구자 커뮤니티 형성 및 합성생물학 생태계 구축 주도
 - ※ 국내 학생, 직장인 등 아이디어를 보유한 일반 시민 대상 운영, 수상자 창업 지원 서비스 연계 등 혜택 부여

② 사회적 수용성 확보 및 규제 개선

- o 생물안전성, 생명윤리 관점에서의 합성생물학에 대한 사회적 수용성 제고를 위한 논의구조 마련('23)
 - 국민의 이해도 제고를 위한 (가칭) **합성생물학 오픈 포럼 운영*** 및 사회·경제적 파급력을 감안한 기술영향평가** 실시
 - * 막연한 합성생물학의 잠재적 위험성 인식을 해소하기 위해 과학자-일반 국민이 참여하는 인터넷 공개강좌 개설·운영
- ** 생명공학육성법에 근거하여 신기술 적용한 산물, 새로운 인공 미생물 제작 등에 대한 산학연 전문가, 일반 국민 등이 참여하는 기술평가위원회 구성·운영
 - 사회적 수용성을 고려하여 합성생물학의 **산업·경제적 영향을** 평가하고 지속가능한 수준에서의 산업화 촉진 방안 마련
 - ※ 바이오파운드리 기술/제품/서비스에 대한 **산업통계 구축** 및 **산업화 촉진 전략** 마련

- 기술 발전 및 사회·경제적 편익 등을 고려한 **규제 검토 및 개선**('23~)
 - 생명공학육성법 개정('20.5)에 따른 범부처 바이오규제 발굴 TF (민-관 규제합동 개선반) 운영
 - 부처 · 용도 · 목적별 중복 규제* 해소를 위한 통합 가이드라인 마련
 - * 현재 유전자변형생물체의 경우 과기정통부, 환경부, 산업부, 농식품부 등에서 16개 행정규칙을 통해 실험, 자원취급, 안전관리 등을 규제
 - 합성생물학 분야 R&D 기획·관리 및 데이터·인력 관리 등의 체계화· 효율화를 위한 **합성생물학 분류체계 마련**('22)
 - ※ 생명공학육성법에 따른 생명공학 분류체계 및 국가과학기술 표준분류체계에 포함

③ 국내 역량 결집 및 국제 협력 활성화

- 산학연이 참여하여 합성생물학 정보 및 기술 교류, 연구협력 확대를 위한 (가칭) **K-합성생물학 협의체**를 구성·운영('22~)
 - 글로벌 바이오파운드리 연합(GBA)* 등 민간 중심의 글로벌 협의체에 한국 대표 기관 역할 수행
 - * 美, 英, 中 등의 27개 민간기관이 참여하는 인프라 협력 플랫폼으로 바이오파운드리 간 정보공유 및 네트워크 형성을 통해 실험의 효율성 향상을 위한 공동 협력 논의
- 양자·다자간 **파트너십**을 통해 **기술 교류 및 경쟁력 확보** 지원
 - 미국, 영국 등 주요국의 합성생물학 연구기관*과 MOU 체결 및 공동 연구 프로젝트 지원(대상국별 1개 이상)
 - * (미국) Agile Biofoundry Harvard-MIT Broad Institute, (영국) London Biofoundry, (중국) 선전고등기술원(SIAT) 등
 - OECD 바이오나노기술위(BNCT), 국제합성생물학학회(SB), 아시아 합성생물학회(ASBA)* 등 국제 네트워크 참여 확대(컨퍼런스 유치 등)
 - * 한국, 중국, 싱가포르, 일본이 공동 설립('18), 매년 국가별 순회 개최
- o 바이오데이터 통합, 모델링, 자동화 등 **합성생물학 국제 표준화 주도**
 - 합성생물학 데이터, 바이오부품뱅크* 및 표기법(SBOL**) 등에 대한 국내 표준 개발 및 글로벌 표준화 추진
 - * 국내 생명연구자원 DB와 연계한 바이오부품 대량 발굴 및 운영을 통한 바이오 부품의 디지털정보 및 실물확보·제공
- ** Synthetic Biology Open Language : 합성생물학 데이터 부품 관련 정보 교환 및 처리를 위한 언어

VI. 추진 일정

	추진과제	소관부처	일정
1	합성생물학 핵심기술 선제적 확보		
	빅데이터·AI 기반 인공세포 설계·제작 원천기술 확보	과기부	′23~
	바이오 제조공정 혁신을 위한 단계별(DBTL)별 요소기술 개발	과기부	′23~
2	정부 주도의 공공 바이오파운드리 구축		
	합성생물학 기반 D-B-T-L 코어 중심의 K-바이오파운드리 구축	과기부 관련부처	′23~
	바이오파운드리 핵심 장비 국산화	과기부 산업부,	′23~′28
3	합성생물학 기반 바이오 제조혁신 조기 성과 창출		
	기존 산업의 바이오 융합 新산업 창출 지원	과기부 산업부,	′25~
	합성생물학 기반 제품 개발 지원 및 창업 활성화	과기부 산업부,	′23~
	민간부문의 합성생물학 R&D 투자 부담 완화	과기부 산업부,	′25~
4	합성생물학 발전 생태계 조성		
	합성생물학 미래 전문인력 양성	과기부 산업부,	′23~
	사회적 수용성 확보 및 규제 개선	과기부 산업부,	′23~
	국내 역량 결집 및 국제 협력 활성화	과기부	′22~

붙임

합성생물학 기술 활용한 분야별 주요 혁신 사례

• 바이오파운드리 산업으로 합성생물학·바이오제조 선도 긴코 바이오웍스社, 미생물 설계-제작 자동화 사업모델로 정밀화학, 제약 등 진출. 모더나의 코로나19 mRNA 백신 제조 지원 2021년 20조 규모 미국 나스닥상장. 합성생물학 산업화 [산업화혁신]

• 감염병 대응 백신 생산성 향상 Ginkgo社, mRNA 백신 생산성 증대를 통한 공장 증설 효과 모더나社의 mRNA 백신 주요원료의 생산성 증대(mRNA 제작위한 DNA 및 효소 최적화로 10배 이상 생산성 향상), 전세계 공급 가속화 신속한 코로나19 mRNA 백신 생산과 팬데믹 대응 선도 [의약혁신]

• 살아있는 의약품 생산 Synlogic社, 의약품을 지속적으로 생산하는 장내미생물 제작 질병감지/약물분비 미생물 제작, 유전질환 및 고형암 치료 임상 진행 의약품 분비 미생물 장내 착상 시. 반복적 투약/주사 불필요 [의약혁신]

• 지카바이러스, 말라리아 등 전염병 매개 모기 근절 옥시텍社, 번식력을 제어하는 수컷모기 제작 및 유전자 드라이브로 해충이나 생태위협종 조절 가능성 입증 모기 매개 질병 사망자 감소 및 감염 질환 예방 [생태계혁신] *말라리아 사망자 40만 명/2019년. 매년 모기 물려 70만~100만 명 사망

• 사용가능 생명자원의 확대

Amyris社 외, **상어유래 스쿠알렌 대체, 대체육 생산, 인공 실크 생산** 동물, 식물 등 한정된 자원에서 유래하는 소재를 유전체 엔지니어링을 통하여 다른 생명자원에서 경제적으로 생산

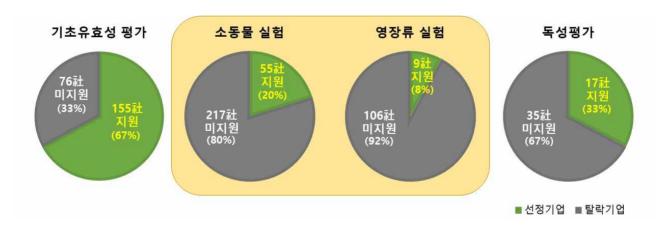
나고야 의정서로 인한 천연자원 무기화 극복 가능 [생명자원혁신]

합성 질소비료 대체제 개발, 토양산성화 방지
 Pivot Bio社, 질소고정 미생물 개발, 작물 수확량 증대
 농업 빅데이터 분석하여 미생물의 질소고정 및 식물 전달 개선
 비료 대신 미생물로 토양을 비옥하게 해 환경오염 감소 [농업혁신]

• 이산화탄소 과다배출 석유화학산업 대체 순환경제 구축 LanzaTech社 외, 합성생물학 기반 온실가스에서 바이오연료 생산 온실가스와 폐자원에서 바이오연료, 바이오플라스틱 생산 미생물 제작 온실가스 감축, 친환경 바이오연료 생산 [환경혁신]

• 플렉서블 디스플레이 소재의 생물학적 생산 Zymergen社, 합성생물학 기반 바이오제조로 폴리이미드 생산 고성능 광학필름, 접착제, 코팅제 생산미생물 개발(1/2시간, 1/10가격) 농업, 전자, 케어, 제약 등 산업 전반 바이오제조 플랫폼 구축 [제조혁신]

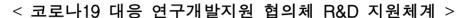
• 타이어용 천연고무 생산

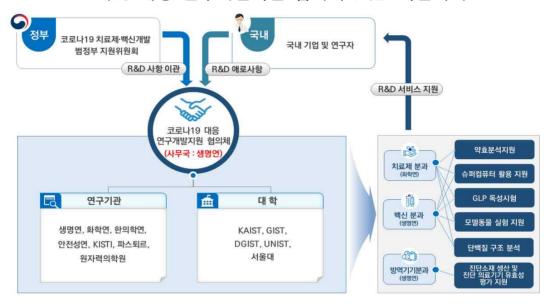

DuPont社, **합성생물학 기반 천연고무 원료 대량생산 미생물 제작** 석유 유래 합성고무, 고무나무 유래 천연고무 대체 **천연자원 보호 및 환경오염 방지 [환경혁신**]

백신·신약 개발 전임상 생태계 조성방안

I. 추진배경 및 경과

1 추진배경


- □ 신·변종 감염병 대응을 위한 백신 등 신약 개발을 위해서는 임상시험 진행 전 약물의 유효성과 안전성을 검증하는 전임상시험*이 필수
 - * 기초유효성 평가, 동물실험(마우스, 패럿, 햄스터, 영장류 등), 독성평가 등
 - 신약개발의 성공률은 매우 낮은 확률(0.01% 수준)이지만, **후보물질**이 전임상시험을 통과하면 성공 가능성이 증대
 - WHO는 'WHO R&D Blue Print'에서 코로나19 등의 발병증상 재현이 용이한 영장류 실험을 전임상 필수항목으로 지정('20.1)
- □ 국내에서 BL3 시설에서의 전임상시험을 지원하는 기관은 한정*되어 있고, 비용도 고가로 기업의 접근성이 매우 낮은 상황
 - * 국내 BL3을 보유한 기관은 75개, 이 중 동물실험이 가능한 민간연구 지원 기관은 20개
 - o 해외에서 전임상시험을 지원할 수 있는 기관도 팬데믹 상황에서는 자국의 연구수요 지원에 집중하여 국내기업 지원에 한계
 - 코로나19 발생 이후, 출연(연) 등의 인프라를 활용해 **전임상시험**을 지원한 비율은 평균 35.2%이며, 소동물·영장류는 특히 저조(16.5%)



- □ 백신 등 신약의 유효성과 안전성 평가를 상시적으로 지원하고 통합적으로 관리하여 개발을 가속화할 수 있는 생태계 조성이 필요
- '국가 전임상시험 지원센터'를 구축하여 체계적·효율적 지원으로 백신 등 신약 개발 기업의 조기 임상 진입을 확대

2 추진경과

- □ 코로나19 치료제·백신 개발 범정부지원위원회의 출범에 따라 연구 개발 총력 지원을 위해 '코로나19 대응 연구개발지원협의체'를 발족('20.4)
 - 과학기술분야 출연(연) 및 과학기술원 등이 참여하여 코로나19 대응 산·학·연 R&D의 애로사항을 맞춤형으로 지원하는 체계 구축

- □ 코로나19 대응 연구개발지원협의체를 통하여 치료제·백신·진단 기기의 유효성, 안전성 등을 평가하는 전임상시험*을 지원('20.4월~)
 - * '20년 3차 추경 125억원으로 지원
 - 치료제·백신 개발 188개 기관에 1,771건의 전임상시험 지원 완료 하고, 진단기기의 경우 54개 기관, 290건 지원 완료('21.8월 기준)
- □ 전임상시험 지원 연구현장 간담회를 개최하여 그간의 전임상지원 현황을 점검하고, 애로사항 청취 및 지원 확대 방안 등을 논의('21.8월)
- □ 기업에 체계적이고 효율적인 전임상 지원 서비스 제공을 위한 '국가 전임상시험 지원센터 구축' 예산 정부(안) 반영('21.8월)
 - ※ 후보물질 유효성 평가, 독성평가 및 연구시설·장비 고도화 등 122억 반영
 - ⇒ 코로나19 대응을 위해 **한시적으로 조직된 연구개발지원협의체**를 **상설화**하고, 기관별 전임상시험 지원을 **총괄적으로** 운영

Ⅱ. 전임상 지원 생태계 구축방향

목표

백신·신약 개발 가속화를 위한 전임상시험 지원 생태계 고도화

기본 방향

- ◈ 팬데믹 대응 한시적 전임상 지원 ⇨ 상시적 총괄 지원체계 구축
- 기관별로 진행되는 심사 · 평가 ⇒ 통합 선정위원회 운영
- ◇ 공급자 중심의 지원 ⇨ 기업 맞춤형 전임상 서비스 제공

1 국가 전임상시험 지원센터 구축

- ◇ 총괄 지원센터 운영 및 선정위원회 통합
- ◇ 통합 지원시스템 구축

2 전문적 전임상시험 지원 추진

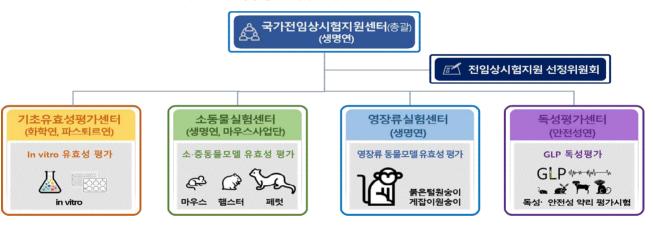
- ◇ 전임상시험 단계별 지원센터 운영
- ◇ 감염 동물모델 개발 등 기반연구 강화

주요 추진 과제

❸ 전임상 데이터 관리 및 활용체계 마련

- ◇ 데이터 활용 체계 구축
- ◈ 데이터의 관리기준 마련 및 분석 서비스 지원

4 연구 인프라 확충


- ◆ ABL3 시설 확충 및 노후시설·장비 고도화 추진
- ▶ BL3 활용 등 전임상시험 지원 연구인력 양성

Ⅲ. 주요 추진과제

1 국가 전임상시험 지원센터 구축

- □ (총괄 운영) 전임상시험 지원의 총괄 관리를 담당, 기업 수요 분석, 지원 대상 선정, 통합 시스템 구축 등을 수행하는 총괄 지원센터 운영
 - 전문성을 가진 연구기관을 단계별 지원센터로 지정하고, 산·학·연의 수요를 총괄적으로 접수·선정하여 센터별로 배분
 - 전임상시험 지원 전과정을 모니터링하여 실험 진행현황과 지원
 기업의 애로사항도 상시적으로 점검

< 국가 전임상시험 지원센터 운영체계 >

- □ (선정위원회 통합) 연구기관별로 운영하던 선정위원회를 통합하여 평가 등에 대한 기업의 행정부담을 경감하고, 효율적인 지원서비스 제공
 - ※ 선정위원으로 대학, 국공립연구소, 병원 뿐 아니라 허가기관의 전문가도 포함 하여 현장과의 연계 강화
 - o 중요성, 시급성 해결가능성 등을 종합평가하고, 실험단계별(기초유효성 평가-소동물실험-영장류실험-독성평가) 소위원회를 운영하여 심충적 심사
 - 선정된 우수 후보물질은 기업 등의 후속 연구 요청 시 추가적인
 심의 없이 지원받을 수 있도록 절차 간소화
- □ (통합 지원시스템 구축) 기업 애로사항 접수에서 완료까지 전과정*을 관리 및 모니터링할 수 있도록 온라인 One-Stop시스템 구축
 - ※ 접수 선정위원회 심의- 선정 실험방법 협의 실험 지원 및 분석 완료
 - 수요자가 쉽고 빠르게 전임상시험 지원을 받을 수 있도록 **단계별 센터 지원현황**, 추진일정, BL3 가용시설 현황 등 정보 제공

2 전문적 전임상시험 지원 추진

- □ (단계별 지원센터 운영) 과학기술분야 출연(연) 등을 전임상시험 단계별*로 지원센터로 지정하여 기업에 전문적인 서비스를 제공
 - * 기초유효성 평가 소동물 효능평가 영장류 효능평가 독성평가
 - (기초유효성평가 센터) 효능이 기대되는 다양한 후보물질에 대하여
 세포단계에서의 약효를 평가하는 시험을 지원
 - (소동물실험 센터) 마우스, 햄스터, 페럿 등을 활용하여 백신,
 치료제의 면역반응, 병변 등 확인하는 약물의 유효성 평가를 지원
 - (영장류실험 센터) 사람과 가장 유사한 반응이 나타나는 붉은털,
 게잡이 원숭이 등을 활용하여 약물의 유효성 평가를 지원
 - (독성평가 센터) 세포, 동물에 백신, 치료제를 투여한 뒤 나타나는
 병리학적 반응 및 부작용 등을 분석하여 약물의 안전성을 평가

<	지원센터별	혀 황	민	지워계회	>

센 터	수행기관	시설현황(계획)	실험소요기간	지원목표/년
기초유효성평가 센터	화학(연), 파스퇴르(연)	BL3 5실 (+4실, ~'22)	10일 내외	140건
소동물실험 센터	생명(연), KMPC	ABL3 5실	4~8주	20개 후보물질
영장류실험 센터	생명(연)	ABL3 2실(+2실, ~'23)	6~18주	5개 후보물질
독성평가 센터	안전성(연)	ABL2 37실	최대 10개월	5개 후보물질

- □ (동물 감염모델 개발) 감염병 등 새로운 질병에 대한 빠른 평가가 가능 하도록 동물 감염모델을 사전에 구축하여 질병 발생 시 신속 지원
 - ※ 코로나19의 경우, 세계 4번째 영장류 감염모델 개발로 치료제·백신 개발을 신속하게 지원
 - 사람과 유사한 면역·병변반응을 나타날 수 있도록 질병에 감염될 수 있는 마우스, 햄스터, 페릿, 원숭이 등을 개발

< 전임상시험 지원 프로세스 >

3 전임상 데이터 관리 및 활용체계 마련

- □ (체계 구축) 전임상시험 단계별로 축적된 데이터*를 취합하여 총괄 관리하고 연구자들에게 공유·활용될 수 있는 체계를 마련
 - * 바이러스 용량·감염경로·노출시간, 모델동물 증상, 후보물질 효능·투여기간 및 경로 등
 - 치료제·백신의 면역반응, 병변 등의 자료를 신·변종 감염병에 대한 신약 개발에 활용하여 신속한 개발을 촉진
- □ (데이터 관리) 전임상실험 결과 분석에 대한 비교 분석이 가능하도록 데이터의 표준화를 추진하고, 전임상 특화 관리기준을 마련
 - o (데이터 표준) 전임상시험을 통해 수집 가능한 감염병 데이터(임상증상, 조직병리, 오믹스 분석 등) 표준 마련 및 시험단계별 표준시험법(SOP)* 개발
 - * Standard Operating Procedure
 - (데이터 공개) 데이터는 지원 완료 시점부터 공개하는 것이 원칙이나,기업의 기밀, 보안 등을 고려하여 공개 유예기간을 검토
- □ (데이터 활용) 국가 전임상시험 지원센터, 바이오데이터스테이션 등을통해 후속 연구개발에 활용될 수 있도록 결과 분석 서비스를 지원

< 감염병 전임상시험 데이터 활용 예시 >

- □ (시설 고도화) 기업수요 대응을 위한 바이러스 연구자원센터(BL3 5실, ABL3 4실) 및 영장류 실험시설(ABL3 4실)을 추가적으로 구축
 - o 영장류 실험센터는 부족한 시설을 확충하고, 동물감염모델 개발 등 기초연구와 함께 기업지원 전담 연구팀을 운영

< 영장류 실험시설 추가 구축계획(안) >

AS is		
	시설 A	
면적	· 247m ²	
실	· 동물실 : 2실 · 분석실 : 1실	
케이지	· 16개	
목적	· 기초원천연구 · 감염병모델개발 OR · 긴급 기업지원 (펜데믹상황)	

Plan ('22~'23)				
시설 B				
면적	· 약 250m²			
실	· 동물실: 2실 · 분석실: 2실			
케이지	· 24개			
목적	· <mark>기업지원전담</mark> (상시 전담지원)			

	To be			
		시설 A+B		
	면적	· 약 500m²		
	실	· 동물실: 4실 · 분석실: 3실		
•	케이지	· 40개		
	목적	[시설 A] · 기초원천연구 · 감염병모델개발		
		[시설 B] · <mark>기업지원전담</mark> (상시 전담지원)		

- 기초유효성 평가, 소동물 실험, 독성평가 지원센터는 ABL3 등 노후시설 개선, 동물규모 확대, 연구장비 추가 확보 등 추진
- 운영에 **많은 비용**이 소요*되는 만큼 새로운 질병에 대비하기 위한 연구시설 유지 및 안정적인 연구수행을 위하여 운영비 지원을 추진
 - * 음압 등 공조시설 운행, 3년 단위의 재인증 및 시설 유지보수, 일회용 방호장비 사용 등으로 운영비에 연 3억원 내외 운영비 필요
- □ (전문인력 양성) 치료제·백신 개발의 필수적인 BL3 활용 연구인력을 전문적으로 육성하여 개발을 가속화
 - 민간의 연구수요를 대응하는 '바이러스 연구자원센터'를 통해 전문 인력을 육성하고, 고품질의 맞춤형 서비스를 제공
 - 연구시설 활용에 대한 안전교육 및 현장형 실습교육을 실시하고,
 인센티브 제공 등을 통해 우수한 전문인력의 유입을 유도

Ⅳ. 향후계획

- □ 국가 전임상시험 지원센터 구축('22.上)
 - ㅇ 총괄센터 운영계획 마련
 - ㅇ 통합 선정위원회 및 소위원회 구성
 - ㅇ 기업 애로사항 전주기를 관리하는 통합관리시스템 홈페이지 구축
- □ 전문적 전임상시험 지원 추진('22.上)
 - ㅇ 단계별 지원센터 인프라 및 인력 운영계획을 수립하고, 운영 개시
- □ 전임상 데이터 관리 및 활용체계 마련('22.上)
 - ㅇ '국가 바이오 데이터 스테이션'과 연계한 데이터 공유 시스템 구축('21.12)
 - 감염병 관련 '데이터 등록 표준위원회'를 구성하여, 감염병 분야 실험/데이터 등록표준 및 SOP 마련 추진('21.12)
 - ㅇ '데이터 발전위원회*'에서 최종 SOP 검토·확정('22.上)
 - * (근거) '다부처 국가생명연구자원 선진화사업 운영관리규정'('21.09 제정)
- □ 인프라 확충('22~'23)
 - ㅇ 영장류 활용 가능 ABL3 인프라 설계 및 착공('22.上)
 - ABL3 인프라 구축 후 인증 및 허가('23.末)
 - o BL3 활용 연구인력 양성 프로그램 기획('22.上) 및 운영('22.下)

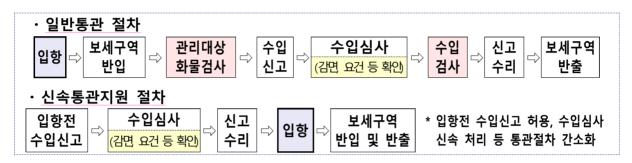
바이오 수출입 지원을 위한 통관 관련 제도개혁

│. 추진배경 및 상황진단

□ 백신 등 바이오 제품 신속통관 지원 필요

- □ 해외반입물품은 관세법에 따라 수입통관 절차를 거친 이후에 국내 사용이 가능하며, 백신 등에 한해 신속통관 지원중
 - * 코로나19로 인한 백신 및 방역물품과 원부자재, 일본 수출규제 품목 신속통관 지원중
- □ 수입통관 지체시 바이오의약품은 **물류비용 증가*** 이외에도 **보관시** 특정 온도를 유지해야 하기 때문에, 형질 변경 우려
 - * 창고 보관료와 관련 수수료가 증가하고 물품을 적기에 공급하지 못하여 기업 생산활동 차질
 - 백신 등의 예에서 보듯이 바이오의약품은 다양한 국가로부터 복잡한 공급망을 형성하고 있으며 콜드체인 등 신물류 프로 세스에도 적극적 대응 필요

□ 바이오의약품 실정에 맞는 보세공장 제도개선·활성화 필요


- □「관세법」상 **보세공장**중 바이오의약분야 보세공장은 셀트리온, 삼성바이오로직스 등 2개사가 허가를 받아 운영중
 - * (현황) 보세공장 특허 총 163개 중 바이오 제조관련 업체는 2개('21.8, 관세청)
 - 보세공장은 반입되는 원재료에 대하여 세금을 유예하고 수입
 신고가 필요 없어 기업의 자금부담 경감 및 물류 절차 간소화

- 보세공장은 수입물품에 대한 과세보류 및 절차 간소화의 혜택이 있는 만큼 **반입대상물품*** 및 특허 **절차를 엄격히 규정**
 - * 관세법 시행령 제199조 및 보세공장운영에 관한 고시 제12조
- (반입물품) 보세공장에는 작업에 직접 투입되는 원료 및 재료 등 생산 제품에 물리적 또는 화학적으로 결합되는 물품만 반입 허용
- (진입장벽) 보세공장 특허 기준 요건* 충족이 까다로워 신규 보세 공장 특허를 받기 위한 준비절차가 업체에는 부담으로 작용
 - * 특허대상 여부, 인적 시설 관리 수출비중 요건, 재고관리 능력 등
- □ 바이오의약 업계는 품질검사를 위한 원재료 및 완제품 반입절차 개선 등 바이오의약품 실정에 맞는 제도개선 요청
 - 수출 품질검사(보증)를 위해 보세공장→연구소로 원재료 반입시마다 건별 수입절차를 진행함에 따라 수출지연 초래(평균 6.9일 소요)
 - * 바이오의약품은 공정단계의 예기치 않은 변화가 제품 품질에 영향이 있을 수 있어 다양한 시험·검사 자료를 종합적으로 확인하는 품질 보증체계 구축 필요
 - 보세공장에서 생산된 완제품을 국내로 반입할 경우 제출서류· 절차규정 미비로 제도 활성화가 미흡
 - * 통상 의약품 수입을 위한 수입신고 제출서류는 수입업 신고증 및 수입품목 허기증으로 규정하나 보세공장 제조품의 국내 반입 시 제출서류는 별도규정 없음
- □ **또한, 바이오 업계는** 바이오의약 분야 보세공장 신규특허가 필요 하다는 입장으로, 보세공장 신설 시 컨설팅 지원 등 요청
 - ⇒ 위탁생산 등 **바이오의약품 생산 경쟁력 강화**를 통해 **글로벌** 백신허브 도약에 기여하기 위해 보세공장 활성화 필요

Ⅱ. 통관 관련 제도개혁 방안

□ 백신 등 바이오의약품 신속통관 지원

- □ 바이오 의약품 수입업체 신속통관 지원
 - 백신 및 관련 원부자재 등 바이오 의약품 제조업체(보세공장 미운영) 대상 관련 부처가 요청한 특정 업체와 품목에 대하여 일정기간 신속통관 지원
 - 신속한 통관절차를 제공하여 기업의 물류비용 부담을 줄이고, 긴급 조달 물품은 조기에 공급하여 적기생산 및 수출 지원

② 바이오의약품 보세공장 반출입 절차 개선

- □ 연구·시험 목적 원재료 등 반입 절차 개선
 - o 표준양식에 따른 계획서*를 제출하면, 식약처 검토를 통해 해당 제품 제조용 원재료·반제품·검체 일괄 사전 승인
 - * 반입기간, 반입하려는 원재료 명칭 등에 대한 연구개발계획서 제출
 - o 이후 수입은 **표준통관예정보고 시스템**으로 당일 처리(전산화)
 - ⇒ 관련 「통합공고」 개정 추진(보세공장 의약품 수입 특례 신설, '21.下)
- □ 내수 판매를 목적 완제품 반입 절차 마련
 - o 보세공장 제조 의약품의 수입신고 서류 및 절차를 규정
 - '제조업·제조품목허가증'으로 '수입업·수입품목허가증' 갈음
 - 통관 전 표준통관예정보고 및 처리
 - ⇒ 관련「통합공고」개정 추진(보세공장 의약품 수입 특례 신설, '21.下)

□ 보세공장 반입대상 물품 확대

- 현행 보세공장 반입대상물품의 범위를 적극적으로 해석하여 **국내** 생산 바이오의약품과 함께 거래되는 품목에 대해 반입대상으로 인정
 - * 사례) 바이오 의약품의 임상물품을 보세공장에서 제조·가공한 물품과 필수 적으로 함께 구성되는 물품으로 인정하여 국내 보세공장 반입을 허용

< 보세공장 제도 기존 및 개선방안 비교 >

기 존

◇ 연구·시험 목적 원재료 반입

- : 절차복잡, 처리기간 과다 소요
- (절차) 매 건별 시험계획서 제출, 수입요건확인면제추천서 발급
- (기간) 평균 6.9일 소요
- ◇ 내수 판매를 위한 완제품 반입
 - : 반입 규정 없음

개 선

◇ 연구·시험 목적 원재료 반입

- : 반입절차 간소화 및 기간 단축
- (절차) 최초 1회 시험계획서 제출, 표준통관예정보고 처리
- → | **(기간)** 1일(2~8h) 소요
 - ◇ 내수 판매를 위한 완제품 반입
 - : 제조업 허가증, 제조품목허가증 제출 및 표준통관예정보고 처리

③ 보세공장 활성화 지원

- □ 보세공장 제도 활용 확산을 위한 교육 및 홍보
 - 한국의약품수출입협회, 한국바이오의약품 협회 등 유관협회에
 보세공장 관련 전용 상담창구 개설 및 협의체* 운영
 - 바이오 수출 기업 대상 온라인 설명회 실시, 홍보물(영상, 카드뉴스 등) 배포
 - * 보세공장 수출 관련 제도 개선의 이행 및 규제개선 발굴 등을 위해 식약처, 관세청, 유관협회, 업계가 참여하는 협의체 구성·운영
- □ 보세공장 활용기반 확대를 위한 컨설팅 서비스 제공
 - 특허심사 시 **특허대상 여부, 인적요건, 관리요건, 시설요건, 수출** 비중요건, 재고관리 및 작업관리 능력 등 충족을 위한 사전 컨설팅
 - 세관 전담팀을 구성하여 원재료 반입부터 제조·가공·수출 등 보세공장 운영 및 신규특허 전반에 대한 컨설팅 지원
 - * 신규 보세공장 설치·운영특허 신청업체의 경우 보세화물 물품관리 체계를 구축하기가 쉽지 않아 관세행정 집중 지원

Ⅲ. 기대효과

- □ 백신 및 원부자재 신속도입을 통한 K-글로벌 백신허브 구축에 기여
 - 국내 바이오 보세공장 생산 물품의 수출 및 반입 활성화를 통해 K-글로벌 백신허브*의 한 축인 생산역량 확충 촉진
 - * 세계 5대 백신강국 도약을 위한 K-글로벌 백신허브화 비전 및 전략발표('21.8.5)
 - 백신관련 제품 연구·개발 및 품질검사 목적의 국내 반입을 원활히 함으로써 향후 다양한 플랫폼 백신개발 활성화 가능
- □ 바이오의약품 신속통관 지원을 통한 물류 및 생산비용 절감
 - 통관시간 단축으로 인하여 창고 보관료 및 운송료 등 기업의
 직접비용과 물품의 적기 공급에 따른 생산비용 절감 효과 발생
- □ 바이오의약품 보세공장 제도 활성화를 통한 금융, 통관, 용역 등 비용절감
 - ㅇ 보세공장으로 전환 시 업체당 연간 약 3.5억원 상당 비용 절감
 - * 최근 보세공장으로 전환한 중소기업 10개 업체를 대상으로 설문조사
 - ^①보세공장 이용시 기대 이익(307백만원) + ^②보세공장 특례지원 비용절감(174백만원) - ^③보세공장 전환 비용(133백만원)
 - * ^①관세등 과세보류로 인한 금융비용 절감, 통관시간 단축에 따른 생산량 확대,^② 특허요건 완화에 따른 비용 절감, ^③보세사채용, 전산시스템 등 시설요건 구비 등
 - 바이오 의약품 생산에 필요한 임상물품을 보세공장에 반입을
 허용하여 업체당 연간 약 20억원 절감 예상
 - 업체당 순수 임상용물품 패키징 용역비 年20억원 상당 절감 기대
 - * (개선전) 임상용 의약품과 함께 제공되는 임상물품의 패키징을 해외임상 대행기관에서 수행하고 비용을 지불

(개선후) 임상물품을 해외에서 직접 구매. 국내 보세공장에 반입하여 직접 수행

** 임상 1프로젝트 당 2억원 × 연간 10회(국내 기업 사례를 기준으로 산출)

바이오의약품 보세공장 개요

- □ (보세구역) 관세법령에 따라 '지정', '특허', '종합'보세구역으로 구분
 - (특허보세구역) 보세공장, 보세창고, 보세전시장, 보세건설장, 보세 판매장으로 구분하고, 세관장의 특허를 받아 운영

< 보세구역 종류 및 개요 >

구분	대상	종류	목적
지정	국가·지자체·공항(항만)이	지정장치장	▶통관품 일시 장치
71.0	소유·관리하는 토지·건물	세관검사장	▶세관장 검사 목적
		보세공장	▶외국 및 내국물품을
		五/110.9	원·재료로 제조·가공
		보세창고	▶외국물품・통관품 장
	게이시 ㅅㅇ 고그러느	五川名工	え
특허	개인이 소유·관리하는 토지·건물	H 제기 제기	▶외국물품을 장치・전
	도시·신호 	보세전시장	시
		ㅂ끼되서자	▶외국 기계류 설비품.
		보세건설장	장비를 장치사용해 건설
		보세판매장	▶보세물품의 판매
조치	관세청장 직권 또는 개인	スポロルフの	、E 引え引 C
종합	요청에 따라 특정지역 지정	종합보세구역	▶투자촉진 등

- □ (보세공장 수출입) 외국과 국내의 원·재료를 반입해 통관보류한 상태에서 제조·가공하고, 완제품은 해외수출 또는 국내반입
 - (관리) 보세공장에 반입된 물품은 사용신고 후 제조·가공해야 하고, 세관장은 필요한 경우 재고조사 등을 통해 부정유출 점검
- □ (보세공장 효과) 기업의 자금·편의 개선 뿐만 아니라 수출 증대로 인한 외화 획득·제조 경쟁력 강화 등 국가적으로도 도움
 - (기업 측면) 관세·부가세 납부를 유보한 상태에서 제조할 수 있어 자금부담 완화 및 통관절차 간소화에 따른 시간 단축 가능
 - ※ 관 세 : 과세가격(물품가격, 운임, 보험료)의 0~8%부가세 : (과세가격 + 관세) × 10%
 - (국가 측면) 외국 원재료를 제조·가공해 수출하는 경우 수출로 인한 직접적인 외화 획득(가공무역) 및 제조 경쟁력 확보에 도움
 - O 바이오의약품 제조소의 **보세공장 현황**

업체명	(약사법) 제조소 허가일	주요 제조품목
셀트리온	'06년 7월	램시마, 허쥬마 등
삼성바이오로직스	'12년 10월	에톨로체, 삼페넷 등